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Abstract
In Bru (2002 J. Phys. A: Math. Gen. 35 8969), we present a general method of
superstabilization corresponding to the addition of the ‘forward scattering’
interaction to some non-superstable model. Here we complete the
thermodynamic study done in this paper and we prove that the ‘standard’
thermodynamic behaviour of the non-superstable model is preserved in its
superstabilized form in the grand-canonical ensemble. In particular, the Bose
condensation phenomena persist in the new Bose gas. Moreover, this method
ensures the strong equivalence for the new superstabilized model between the
canonical and grand-canonical ensembles in the thermodynamic limit (Georgii
H-O 1994 Probab. Theory Related Fields 99 171–95) and then it gives another
way to analyse the canonical (infinite volume) Gibbs state of the first non-
superstable model.

PACS numbers: 05.30.Jp, 03.75.Fi, 05.70.−a

1. Introduction

To fix the notation, we recall first some facts about the imperfect Bose gas (IBG), see [3–9].

Enclosed in a cubic box� = d×
α=1
L ⊂ R

d , the IBG [3] is defined by

H IBG
� ≡ T� +

λ

V
N2
� λ > 0 (1.1)

with

T� ≡
∑
k∈�∗

εka
∗
k ak (1.2)

0305-4470/02/438995+30$30.00 © 2002 IOP Publishing Ltd Printed in the UK 8995

http://stacks.iop.org/ja/35/8995


8996 J-B Bru

N� ≡
∑
k∈�∗

a∗
k ak. (1.3)

Here εk = h̄2k2/2m represents the one-particle energy spectrum and the sums run over the set

�∗ =
{
k ∈ R

d : kα = 2πnα
L

, nα = 0,±1,±2, . . . , α = 1, 2, . . . , d

}
i.e. we consider periodic boundary conditions. The operators a#

k = {a∗
k or ak} are the usual

boson creation/annihilation operators in the one-particle state ψk(x) = V − 1
2 eikx, k ∈ �∗,

x ∈ �, acting on the boson Fock space

FB
� ≡ +∞⊕

n=0
H(n)
B (1.4)

where

H(n)
B ≡ (L2(�n))symm (1.5)

are the symmetrized n-particle Hilbert spaces appropriate for bosons
(H(0)

B = C
)
. In contrast

with the perfect Bose gas (PBG) (1.2), the IBG (1.1) is superstable [11] and so, given an
inverse temperature β > 0, the corresponding grand-canonical IBG pressure

pIBG
� (β,µ) = 1

βV
ln TrFB

�

(
e−β(H IBG

� −µN�)) (1.6)

exists for any chemical potential µ ∈ R even in the thermodynamic limit:

QIBG ≡ {
(β > 0, µ ∈ R) : lim

�
pIBG
� (β,µ) < +∞} = QS ≡ {β > 0} × {µ ∈ R}. (1.7)

Moreover, for d � 3, there is a critical chemical potential

µIBG
c (β) ≡ 2λρPBG(β, 0) > 0 (1.8)

such that the Bose–Einstein (BE) condensation, in the PBG, persists in the IBG (1.1) for
µ > µIBG

c (β), see [5, 6, 9]. Here

ρPBG(β, 0) ≡ sup
α<0

ρPBG(β, α) = lim
α→0−

ρPBG(β, α) = 1

(2π)d

∫
R
d

ddk (eβεk − 1)−1 < +∞
(1.9)

is the critical density for the PBG in high dimensions d � 3 with

ρPBG(β, α) = 1

(2π)d

∫
R
d

ddk (eβ(εk−α) − 1)−1. (1.10)

In particular, the papers [5, 6] show that the conventional BE condensation with density
ρIBG

0 (β,µ) is a condensation on the zero-mode,

ρIBG
0 (β,µ) ≡ lim

�

1

V
〈a∗

0a0〉H IBG
�
(β,µ) = 2

(
µ− µIBG

c (β)

λ

)
> 0 for µ > µIBG

c (β)

(1.11)

where 〈−〉H IBG
�
(β,µ) represents the (finite volume) Gibbs state for the HamiltonianH IBG

� (1.1)
in the grand-canonical ensemble (β,µ).

In fact, in the grand-canonical ensemble but for a fixed particle density ρ > 0 one has

ρIBG
0 (β, ρ) = ρIBG

0 (β,µIBG(ρ)) = sup{0, ρ − ρPBG(β, 0)} (1.12)

where for any ρ > 0, µIBG(ρ) is the unique chemical potential solution of equation

ρIBG(β,µ) ≡ lim
�

1

V
〈N�〉H IBG

�
(β,µ) = ρ. (1.13)
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Thus, the conventional BE condensate density ρIBG
0 (β, ρ) (1.12) for the IBG (1.1) coincides

with that for the PBG (1.2),

ρPBG
0 (β, ρ) ≡ lim

�

1

V
〈a∗

0a0〉T�
(
β, αPBG

� (ρ)
) = sup{0, ρ − ρPBG(β, 0)} (1.14)

i.e.

ρPBG
0 (β, ρ) = ρIBG

0 (β, ρ) (1.15)

for any fixed particle density ρ > 0 in the grand-canonical ensemble. Here αPBG
� (ρ) in (1.14)

is the unique chemical potential verifying

ρPBG
�

(
β, α = αPBG

� (ρ)
) ≡ 1

V
〈N�〉T�

(
β, αPBG

� (ρ)
) = ρ (1.16)

for any ρ > 0,with 〈−〉T�(β, α) representing the finite volume Gibbs state for the Hamiltonian
T� (1.2) also in the grand-canonical ensemble (β, α).

Then, adding the interaction (λ/V )N2
� to a non-superstable Hamiltonian (but stable [11])

HX
� ≡

∑
k∈�∗

εka
∗
kak + UX

� = T� + UX
� (1.17)

does not seem to change the intrinsic thermodynamic properties. In particular, the phenomenon
of Bose condensation seems to persist in the new superstabilized model

HSX
� ≡ HX

� +
λ

V
N2
� λ > 0. (1.18)

Another example of such influence could be seen in [12, 13] where the interaction (λ/V )N2
�

stabilizes this specific Bose system for any µ ∈ R without destroying the coexistence of
two Bose condensations [13]: a first one, non-conventional, in the zero-mode (type I) which
coexists for high fixed densities with a second one, conventional and non-extensive (type III),
see (3.40)–(3.45) below.

In [1], we have presented a general method of superstabilization corresponding to (1.18).
Then assuming some sufficient conditions on the non-superstable Bose system X, we have
explicitly found the thermodynamic functions (free-energy density, grand-canonical pressure
and particle density) of the new superstabilized model SX using the model X. Then this paper
proposes to complete this thermodynamic analysis [1] by studying the Bose condensation
phenomena. Then, following the work of Georgii [2], by analysing the notions of equivalence
of ensembles (canonical/grand-canonical) we explain the main interest of this method of
superstabilization: it gives a new way to find the thermodynamic behaviour of the non-
superstable model in the canonical ensemble such as, for example, the existence of Bose
condensations.

Hence, in section 2 we briefly recall the thermodynamic results of [1]. Then the
section 3 derives the existence of Bose condensations for the superstabilized Hamiltonian
assuming some Bose condensations in the first (non-superstable) Bose gas X. In section 4, we
explain how the canonical ensemble is related to the grand-canonical ensemble on the level of
Gibbs states for the superstabilized Bose gas SX and we describe a method to deduce some
thermodynamic properties (Bose condensations) for the non-superstable Hamiltonian in the
canonical ensemble. We reserve section 5 for concluding remarks and discussions. Some
reminders about classification of Bose condensations and generating functionals are presented
in two appendices.
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2. Thermodynamic study [1]

2.1. Set-up of the problem

The Hamiltonians HX
� (1.17) and HSX

� (1.18) are well defined on the boson Fock space FB
�

(1.4). HX
� verifies[

HX
� ,N�

] = 0. (2.1)

Then, for a fixed particle density ρ > 0,we define by f X� (β, ρ) and f SX� (β, ρ) the free-energy
densities,

f X� (β, ρ) ≡ − 1

βV
ln TrH(n)

B

({
e−βHX

�

}(n))
f SX� (β, ρ) ≡ − 1

βV
ln TrH(n)

B

({
e−βHSX

�

}(n))
(2.2)

where n = [Vρ] denotes the integer part of Vρ and

A(n) ≡ A
⌈H(n)

B (2.3)

is the restriction of any operator A acting on the boson Fock space FB
� (1.4) to H(n)

B (1.5).
Using, in the grand-canonical ensemble, two chemical potentials α and µ, respectively

for the models X (1.17) and SX (1.18), the corresponding pressures are defined by

pX�(β, α) ≡ 1

βV
ln TrFB

�

(
e−β(HX

�−αN�)) pSX� (β,µ) ≡ 1

βV
ln TrFB

�

(
e−β(HSX

� −µN�))
(2.4)

and the grand-canonical particle densities verify

ρX�(β, α) ≡
〈
N�

V

〉
HX
�

(β, α) = ∂αp
X
�(β, α)

ρSX� (β,µ) ≡
〈
N�

V

〉
HSX
�

(β,µ) = ∂µp
SX
� (β,µ).

(2.5)

Here 〈−〉HX
�
(β, α) and 〈−〉HSX

�
(βµ) represent the (finite volume) grand-canonical Gibbs state

for some Hamiltonian HX
� or HSX

� and we also define by 〈−〉HX
�
(β, ρ) and 〈−〉HSX

�
(β, ρ) the

corresponding (finite volume) canonical Gibbs states (see (2.3)):

〈−〉HX
�
(β, ρ) ≡

TrH(n)
B

({
(−) e−βHX

�

}(n))
TrH(n)

B

({
e−βHX

�

}(n)) 〈−〉HSX
�
(β, ρ) ≡

TrH(n)
B

({
(−) e−βHSX

�

}(n))
TrH(n)

B

({
e−βHSX

�

}(n))
〈−〉HX

�
(β, α) ≡ TrFB

�

(
(−) e−β(HX

�−αN�))
TrFB

�

(
e−β(HX

�−αN�)) 〈−〉HSX
�
(β,µ) ≡ TrFB

�

(
(−) e−β(HSX

� −µN�))
TrFB

�

(
e−β(HSX

� −µN�)) .

(2.6)

Now, the thermodynamic limits of functions (2.2), (2.4) and (2.5) verify:

Conditions 2.1.

(i) The (infinite volume) free-energy density

f X(β, ρ) ≡ lim
�
f X� (β, ρ) < +∞ (2.7)

is defined for any β > 0 and ρ > 0.
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X

X

X
β

X
β

X

β

X

X

β

β

β

0 αα αsup

sup

αsup αα

(a) (b)

1,

sup 1,ρ   (β,α   )

inf 1,ρ   (β,α   )

ρ  (β,α)

sup

inf

1,

1,

1,

ρ   (β,α   )

ρ   (β,α   )

ρ  (β,α    )

ρ  (β,α)

Figure 1. Illustration of the (infinite volume) particle density ρX(β, α) (2.11) considering the
existence of α1,β with (a) no saturation of the particle density ρX(β, α), see (2.16); (b) saturation
of the particle density ρX(β, α), see (2.17).

(ii) The stability domainQX of HX
� is equal to

QX ≡ {
(β > 0, α ∈ R) : lim

�
pX�(β, α) < +∞} = Q ≡ {β > 0} × {α < αsup < +∞}.

(2.8)

(iii) Fixing the inverse temperature β > 0, the thermodynamic limit of pX�(β, α) (2.4), i.e.

pX(β, α) ≡ lim
�
pX�(β, α) < +∞ for α < αsup (2.9)

and the (infinite volume) free-energy density f X(β, ρ) (2.7) are always related by the
Legendre transformation,

pX(β, α) = sup
ρ>0

{αρ − f X(β, ρ)} α < αsup

f X(β, ρ) = sup
α<αsup

{αρ − pX(β, α)} ρ > 0
(2.10)

i.e. the weak equivalence of canonical and grand-canonical ensembles is verified for the
gas X (1.17).

(iv) The (infinite volume) particle density (see figure 1)

ρX(β, α) ≡ lim
�
ρX�(β, α) (2.11)

is a continuous function for α < αsup, except for one chemical potential α1,β < αsup.

For further discussions concerning the assumptions of conditions 2.1, see [1]. If

lim
α→α−

sup

pX(β, α) < +∞ (2.12)

then we extend pX(β, α) by continuity to

QX ∪ {(β > 0, αsup)} = Q ∪ {(β > 0, αsup)} = {β > 0} × {α � αsup < +∞}
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i.e.

pX(β, αsup) ≡ lim
α→α−

sup

pX(β, α) < +∞. (2.13)

Note that
{
pX�(β, α)

}
�

is a set of convex functions for α < αsup and using the Griffiths lemma
[15, 16], (2.5) combined with (2.11) implies in the thermodynamic limit

ρX(β, α) = ∂αp
X(β, α). (2.14)

Note also that if there is discontinuity of the particle density ρX(β, α) (2.11) for some α = α1,β

(condition 2.1 (iv)) we have

ρXinf(β, α1,β ) ≡ lim
α→α−

1,β

ρX(β, α) = lim
α→α−

1,β

∂αp
X(β, α) < lim

α→α−
sup

ρX(β, α)

ρXsup(β, α1,β) ≡ lim
α→α+

1,β

ρX(β, α) = lim
α→α+

1,β

∂αp
X(β, α) < lim

α→α−
sup

ρX(β, α)
(2.15)

cf (2.14). Moreover, we may have two different cases for α → α−
sup: either one has

lim
α→α−

sup

ρX(β, α) = lim
α→α−

sup

∂αp
X(β, α) = +∞ (2.16)

or there is a saturation of the infinite volume particle density ρX(β, α) (2.11), i.e. one has a
critical particle density

ρX(β, αsup) ≡ lim
α→α−

sup

ρX(β, α) = lim
α→α−

sup

∂αp
X(β, α) < +∞ (2.17)

cf (2.14).

2.2. Summary of basic thermodynamic results

Now, we quickly sum up the thermodynamic relations between the Bose systems X (1.17) and
SX (1.18) proved in [1].

(1) In the canonical ensemble, by (2.1) we have

f SX(β, ρ) ≡ lim
�
f SX� (β, ρ) = f X(β, ρ) + λρ2 ρ > 0 (2.18)

cf (2.2) and (2.7).
(2) In the grand-canonical ensemble, the thermodynamic limit pSX(β,µ) of pSX� (βµ)

(2.4) is deduced from pX(β, α) (2.9) by

pSX(β,µ) = inf
α<αsup

{
pX(β, α) +

(µ− α)2

4λ

}
= pX(β, α̃β(µ)) +

(µ− α̃β(µ))
2

4λ
(2.19)

for (β, µ) ∈ QS (1.7 ). Note that α̃β (µ) � αsup (2.19) is an increasing continuous function
for µ ∈ R (see figures 2 and 3). Moreover, the infinite volume particle density ρSX(β,µ) is a
continuous and strictly increasing function from µ ∈ R to (0,+∞) and verifies

ρSX(β,µ) ≡ lim
�
ρSX� (β,µ) = ∂µp

SX(β,µ) = (µ− α̃β (µ))

2λ
(2.20)

for (β,µ) ∈ QS (1.7) (see figures 4 and 5). Actually, one has

ρSX(β,µ) = ρX(β, α̃β(µ)) (2.21)

for

µ ∈ Iµ(β) ≡ {µ ∈ R : α̃β(µ) ∈ (−∞, αsup), α̃β(µ) �= α1,β} (2.22)
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β

β
µ

supinfµ    (β)0 µ    (β)

α

αsup

α  (µ)

1,

Figure 2. Illustration of the function α̃β (µ) � αsup defined by equation (2.19) with no saturation
of the particle density ρX(β, α) (2.11), see (2.16).

β

β

supinfµ    (β)0
µ  (β)C

µµ    (β)

α  (µ)

α1,

αsup

Figure 3. Illustration of the function α̃β (µ) � αsup defined by equation (2.19) with saturation of
the particle density ρX(β, α) (2.11), see (2.17).

i.e. for

µ < lim
α→α−

sup

2λρX(β, α) + αsup with µ /∈ (µ1,inf(β), µ1,sup(β)). (2.23)

Here, if α1,β exists (condition 2.1 (iv)), the two chemical potentialsµ1,inf(β) and µ1,sup(β) are
defined by

µ1,inf(β) ≡ 2λρXinf(β, α1,β) + α1,β = 2λ lim
α→α−

1,β

∂αp
X(β, α) + α1,β

µ1,sup(β) ≡ 2λρXsup(β, α1,β ) + α1,β = 2λ lim
α→α+

1,β

∂αp
X(β, α) + α1,β

(2.24)

cf (2.15), whereas, if there is a critical particle density ρX(β, αsup) (2.17) then we define by
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β
X

β
X

SX

0 µ
infµ    (β) supµ    (β)

sup 1,ρ   (β,α   )

1,inf
ρ   (β,α    )

ρ   (β,µ)

Figure 4. Illustration of the particle density ρSX(β, µ) (2.20) with no saturation of the particle
density ρX(β, α).

c

X
β

X

SX

X
β

0 µ
supµ    (β)infµ    (β)

sup

µ  (β)

sup 1,ρ   (β,α   )

ρ  (β,α    )

ρ   (β,µ)

inf 1,ρ   (β,α   )

Figure 5. Illustration of the particle density ρSX(β, µ) (2.20) with saturation of the particle density
ρX(β, α).

µc(β) ≡ 2λρX(β, αsup) + αsup = 2λ lim
α→α−

sup

∂αp
X(β, α) + αsup (2.25)

the corresponding critical chemical potential.

Remark 2.2. For µ ∈ Iµ(β) (2.22) we have

∂α

{
pX(β, α) +

(µ− α)2

4λ

} ∣∣∣∣
α=α̃β (µ)

=
{
ρX(β, α)− µ− α

2λ

} ∣∣∣∣
α=α̃β (µ)

= 0

with α̃β(µ) � αsup defined by (2.19).

(3) Now, let us consider by ρ > 0 the fixed particle density in the grand-canonical
ensemble. If the particle density ρX(β, α) (2.11) is a strictly increasing function for α < αsup,
then for any

ρ < lim
α→α−

sup

ρX(β, α) (2.26)

there is a unique α(ρ) < αsup such that

ρX(β, α(ρ)) = ∂αp
X(β, α(ρ)) = ρ (2.27)
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cf (2.14). If there is a saturation (2.17) of the infinite volume particle density ρX(β, α) (2.11),
we extend the function α(ρ) to ρ � ρX(β, αsup) by

α(ρ) ≡ αsup for ρ � ρX(β, αsup). (2.28)

For the model SX (1.18), the unique chemical potential µ(ρ) is a solution of the equation

ρSX(β,µ(ρ)) = ρ (2.29)

and also verifies

α̃β(µ(ρ)) = α(ρ) (2.30)

for any ρ > 0. In fact, through (2.20) combined with (2.30) we have

µ(ρ) = 2λρ + α(ρ) ρ > 0. (2.31)

If we consider the grand-canonical pressures (2.4) in the thermodynamic limit for a fixed
particle density ρ > 0, then one gets

pSX(β,µ(ρ)) = pX(β, α̃β(µ(ρ))) + λρ2 = pX(β, α(ρ)) + λρ2. (2.32)

Note that (2.32) is related to (2.18), see discussions in [1].

Remark 2.3. For any ρ > 0 the function ρ → µ(ρ) (2.29) is bijective from ρ > 0 to µ(ρ) ∈
R whereas, if (2.17) is satisfied, the function ρ → α(ρ) (2.27)–(2.28) may be bijective only
from ρ � ρX(β, αsup) to α(ρ) � αsup.

3. Bose condensations in the grand-canonical ensemble

In the last section (see also [1]), using the thermodynamicbehaviour of the first non-superstable
model X (1.17), we recall the thermodynamic limits of basic thermodynamic functions
(2.2)–(2.5) for the superstable model SX (1.18), i.e. the free-energy density (2.18), the grand-
canonical pressure (2.19) (see also (2.32)) and particle density (2.20)–(2.25). The purpose of
this section is now to analyse the relations between the existence of a Bose condensation in the
model X and the appearance of a similar Bose condensation for the corresponding superstable
model SX. In this section, note that we restrict our arguments only in the grand-canonical
ensemble: (β, α) for the (non-superstable) model X (1.17) and (β,µ) for the (superstable)
model SX (1.18).

3.1. Existence of the same ‘global’ Bose condensation for a fixed particle density

First, we recall that formally we may have six kinds of condensation: non-conventional or
conventional, of type I, II or III, see appendix A. More generally, the existence of one or
several kinds of Bose condensation for the non-superstable model X (1.17) means that at least
we have

lim
δ→0+

lim
�

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HX
�
(β, α�(ρ)) > 0 (3.1)

i.e. a ‘global’ Bose condensation for a fixed particle density ρ > 0 in the grand-canonical
ensemble (β, α). Here Nk ≡ a∗

kak and α�(ρ) is defined by

ρX�(β, α�(ρ)) = ∂αp
X
�(β, α�(ρ)) = ρ (3.2)

for any ρ > 0. In order to simplify our arguments, here we assume that

sup
α∈QX

�,β

ρX�(β, α) = +∞ QX
�,β ≡ {

α ∈ R : ρX�(β, α) < +∞}
. (3.3)
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In fact, if

sup
α∈QX

�,β

ρX�(β, α) ≡ ρc,�(β) < +∞ (3.4)

then we should take throughout this subsection a fixed particle density

ρ � lim
�
ρc,�(β).

Remark 3.1. In spite of condition 2.1 which implies

lim
�
ρX�(β, α > αsup) = +∞

note that for a specific set of α > αsup we may have

ρX�(β, α > αsup) < +∞. (3.5)

An example is given below by the diagonal model (3.40) studied in paper [12] which verifies
(3.5) for α ∈ R even if α has to be smaller than αsup = 0 in order to get a finite pressure or
particle density in the thermodynamic limit.

Note that for any ρ > 0,

α(ρ) = lim
�
α�(ρ) (3.6)

with α(ρ) defined by (2.27)–(2.28). We also denote byµ�(ρ) the chemical potential satisfying

ρSX� (β,µ�(ρ)) = ρ (3.7)

and via (2.29) one has

µ(ρ) = lim
�
µ�(ρ). (3.8)

In order to control the ‘global’ Bose condensation in the superstable model SX (1.18) we
introduce the auxiliary Hamiltonians

HX
�,γ ≡ HX

� − γ
∑

{k∈�∗:‖k‖�δ}
a∗
k ak (3.9)

HSX
�,γ ≡ HSX

� − γ
∑

{k∈�∗:‖k‖�δ}
a∗
k ak = HX

�,γ +
λ

V
N2
� (3.10)

for fixed δ > 0, λ > 0 and γ < εδ ≡ ε‖k‖=δ . Note that relation (2.1) verified by HX
� (1.17)

is also satisfied by the stable Hamiltonian HX
�,γ (3.9). Then we define their corresponding

grand-canonical pressures

pX�(β, α, γ ) ≡ 1

βV
ln TrFB

�

(
e−β(HX

�,γ−αN�)) (3.11)

pSX� (β,µ, γ ) ≡ 1

βV
ln TrFB

�

(
e−β(HSX

�,γ−µN�)). (3.12)

In order to use (2.19), the Hamiltonian HX
�,γ (3.9) should verify some sufficient conditions as

(i)–(iii) of conditions 2.1 (see also discussions in [1]). The Hamiltonian HX
�,γ (3.9) could be

seen as HX
� (1.17) modulo the new free-particle spectrum transformation

εk → εk,γ ≡ εk − γ . χ[δ,+∞) (‖k‖) � 0 γ < εδ ≡ ε‖k‖=δ δ > 0 (3.13)

where χA(x) is the characteristic function of a domain A. In fact the assumptions (i) and
(iii) of conditions 2.1 are stable modulo a free-particle spectrum transformation (3.13). In
particular, to prove (2.10) for (β, α) in the stability domainQX

γ of HX
�,γ (3.9), i.e.
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(β, α) ∈ QX
γ ≡ {

(β > 0, α ∈ R) : lim
�
pX�(β, α, γ ) < +∞} �= {∅} (3.14)

the difficulty comes from the interaction termUX
� (1.17) and not from the kinetic part T� (1.2)

or here from

T�,γ =
∑
k∈�∗

εk,γ a
∗
k ak (3.15)

as soon as εk,γ > 0 for k ∈ �∗\{0}, see for example [11]. Then the Hamiltonian HX
�,γ (3.9)

also verifies (i) and (iii) of conditions 2.1. The stability domainQX
γ (3.14) is

QX
γ = {β > 0} × {α < αsup(γ ) < +∞} (3.16)

see (2.8). Note that αsup(γ ) ∈ [αsup − γ, αsup] if γ > 0.
For a large class of known Hamiltonians, as soon as εk,γ > 0 for k ∈ �∗\{0}, note that the

stability domainQX (2.8) is in general stable modulo the free-particle spectrum transformation
(3.13 ), i.e.

QX = QX
γ = Q ≡ {β > 0} × {α < αsup(γ ) = αsup < +∞} (3.17)

for γ < εδ and δ > 0 sufficiently small, see (2.8), (3.14) and (3.16).
Thus the Hamiltonian HX

�,γ (3.9) verifies (i) and (iii) of conditions 2.1, see also (3.16),
and equality (2.19) remains unchanged,

pSX(β,µ, γ ) ≡ lim
�
pSX� (β,µ, γ ) = inf

α<αsup(γ )

{
pX(β, α, γ ) +

(µ− α)2

4λ

}
= pX(β, α̃β,γ (µ), γ ) +

(µ− α̃β,γ (µ))
2

4λ
(3.18)

for (β,µ) ∈ QS (1.7 ), where pX(β, α, γ ) is the pressure pX(β, α) (2.9) with the free-particle
spectrum (3.13).

Theorem 3.2. Let us consider a model X (1.17) satisfying conditions 2.1. Then, with α�(ρ)
and µ�(ρ) defined by (3.2) and (3.7) respectively, one has

lim
δ→0+

lim
�

 1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HSX
�
(β,µ�(ρ))− 1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HX
�
(β, α�(ρ))

 = 0

(3.19)

for ρ � limα→α−
sup
ρX(β, α) and ρ /∈ (

ρXinf(β, α1,β), ρ
X
sup(β, α1,β)

)
(2.15) if we consider the

existence of α1,β (condition 2.1 (iv)).
Considering that, for δ > 0 sufficiently small, the particle density associated with HX

�,γ

(3.9),

ρX(β, α, γ ) ≡ lim
�

〈
N�

V

〉
HX
�,γ

(β, α) = ∂α
{

lim
�
pX�(β, α, γ )

} = ∂αp
X(β, α, γ ) (3.20)

(see (3.11)) is a continuous function of γ < εδ, the double limit (3.19) is also verified:

• for ρ > ρX(β, αsup) if there is a critical particle density ρX(β, αsup) (2.17) and one has
(3.17) αsup(γ ) = αsup;

• for ρ ∈ (ρXinf(β, α1,β ), ρ
X
sup(β, α1,β )

)
(2.15), if the pointα1,β(γ ) < αsup(γ ) of discontinuity

of ρX(β, α, γ ) (3.20) is α1,β (γ ) = α1,β .
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Proof.
(1) Let δ > 0, then we have

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HX
�
(β, α) = ρX�(β, α)− 1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HX
�
(β, α)

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HSX
�
(β,µ) = ρSX� (β,µ)− 1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HSX
�
(β,µ).

(3.21)

(2) Note that via (3.18)

∂γ p
SX(β,µ(ρ), γ ) = ∂α

{
pX(β, α, γ ) +

(µ(ρ)− α)2

4λ

} ∣∣∣∣
α=α̃β,γ (µ(ρ))

∂γ α̃β,γ (µ(ρ))

+ ∂γ

{
pX(β, α, γ ) +

(µ(ρ)− α)2

4λ

} ∣∣∣∣
α=α̃β,γ (µ(ρ))

(3.22)

for δ > 0 sufficiently small. Via (2.30), (3.2) and (3.6)–(3.8) note that

α(ρ) = lim
�
α�(ρ) = α̃β(µ(ρ)) = α̃β,γ=0(µ(ρ))

µ(ρ) = lim
�
µ�(ρ).

(3.23)

(3) Let

ρ � lim
α→α−

sup

ρX(β, α)

i.e.

µ(ρ) � 2λ lim
α→α−

sup

ρX(β, α) + αsup

see (2.31) and considering the existence of α1,β (condition 2.1 (iv)) we take ρ /∈(
ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

)
(2.15), i.e. µ(ρ) /∈ (µ1,inf(β), µ1,sup(β)) (2.24), cf (2.31). Since

for ρ � limα→α−
sup
ρX(β, α) and ρ /∈ (ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

)
, one has

∂α

{
pX(β, α) +

(µ(ρ)− α)2

4λ

} ∣∣∣∣
α=α̃β (µ(ρ))

= ∂α

{
pX(β, α, γ ) +

(µ(ρ)− α)2

4λ

} ∣∣∣∣
α=α̃β (µ(ρ)),γ=0

= 0

see remark 2.2, by (3.23) combined with (3.22) we obtain

∂γ p
SX(β,µ(ρ), γ )|γ=0 = ∂γ p

X(β, α̃β(µ(ρ)), γ )|γ=0 (3.24)

for ρ � limα→α−
sup
ρX(β, α) and ρ /∈ (ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

)
(2.15).

(4) Considering the existence of a critical particle density ρX(β, αsup) (2.17), let
ρ > ρX(β, αsup), i.e.

µ(ρ) > µ(ρX(β, αsup)) = 2λρX(β, αsup) + αsup = µc(β) (3.25)

cf (2.25) and (2.31). Via (2.17) combined with the continuity of ρX(β, α, γ ) (3.20) as a
function of γ < εδ, there is also a critical density

ρX(β, αsup(γ ), γ ) ≡ lim
α→α−

sup(γ )
ρX(β, α, γ ) < +∞.

Following the same arguments used to study the function α̃β(µ) (2.19) (cf [1]), we get that
α̃β,γ (µ) = αsup(γ ) (3.18) is constant as a function of

µ > µc(β, γ ) ≡ 2λρX(β, αsup(γ ), γ ) + αsup(γ ). (3.26)
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Thus, assuming (3.17), we find

∂γ α̃β,γ (µ) = ∂γ αsup(γ ) = 0 for µ > µc(β, γ ) (3.26). (3.27)

If ρ > ρX(β, αsup) then for |γ | sufficiently small, ρ > ρX(β, αsup(γ ), γ ) and by (2.31)
µ(ρ) > µc(β, γ ) (3.26). So, by (3.27)

∂γ α̃β,γ (µ(ρ)) = 0 for ρ > ρX(β, αsup) (2.17) (3.28)

and via (3.23) equation (3.22) implies

∂γ p
SX(β,µ(ρ), γ )|γ=0 = ∂γ p

X(β, α̃β(µ(ρ)), γ )|γ=0 (3.29)

for ρ > ρX(β, αsup) (2.17).
(5) Let ρ ∈ (ρXinf(β, α1,β ), ρ

X
sup(β, α1,β)

)
(2.15), i.e. µ(ρ) ∈ (µ1,inf(β), µ1,sup(β)) (2.24),

cf (2.31). Then, there isα1,β (γ ) < αsup(γ ) such thatρX(β, α, γ ), as a function ofα < αsup(γ ),

is discontinuous on α1,β (γ ),

ρXinf(β, α1,β(γ ), γ ) ≡ lim
α→α−

1,β (γ )
ρX(β, α, γ ) < lim

α→α−
sup(γ )

ρX(β, α, γ )

ρXsup(β, α1,β(γ ), γ ) ≡ lim
α→α+

1,β (γ )
ρX(β, α, γ ) < lim

α→α−
sup(γ )

ρX(β, α, γ )
(3.30)

with

α1,β (0) = α1,β

ρXinf(β, α1,β(0), 0) = ρXinf(β, α1,β )

ρXsup(β, α1,β (0), 0) = ρXsup(β, α1,β)

and ρXinf(β, α1,β (γ ), γ ) < ρXsup(β, α1,β (γ ), γ ). Again, following the same arguments used to
study the function α̃β(µ) (2.19) (cf [1]), α̃β,γ (µ) = α1,β (γ ) (3.18) is constant as a function of
µ ∈ [µ1,inf(β, γ ), µ1,sup(β, γ )]. Here

µ1,inf(β, γ ) ≡ 2λρXinf(β, α1,β(γ ), γ ) + α1,β (γ )

µ1,sup(β, γ ) ≡ 2λρXsup(β, α1,β (γ ), γ ) + α1,β(γ )
(3.31)

see (3.30). Then, assuming that α1,β(γ ) = α1,β for γ < εδ and δ > 0 sufficiently small, we
find

∂γ α̃β,γ (µ) = ∂γ α1,β (γ ) = 0 for µ ∈ (µ1,inf(β, γ ), µ1,sup(β, γ )) (3.31). (3.32)

If ρ ∈ (ρXinf(β, α1,β ), ρ
X
sup(β, α1,β )

)
(2.15), then for |γ | sufficiently small,

ρ ∈ (ρXinf(β, α1,β(γ ), γ ), ρ
X
sup(β, α1,β(γ ), γ )

)
(3.30) and by (2.31) µ(ρ) ∈ (µ1,inf(β, γ ), µ1,sup(β, γ )) (3.31). Therefore, since by (3.32)

∂γ α̃β,γ (µ(ρ)) = 0 for ρ ∈ (ρXinf(β, α1,β ), ρ
X
sup(β, α1,β)

)
(2.15) (3.33)

by (3.23) equation (3.22) implies again

∂γ p
SX(β,µ(ρ), γ )|γ=0 = ∂γ p

X(β, α̃β(µ(ρ)), γ )|γ=0 (3.34)

for ρ ∈ (ρXinf(β, α1,β), ρ
X
sup(β, α1,β)

)
(2.15).
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(6) Now, since
{
pX�(β, α, γ )

}
�

and
{
pSX� (β,µ, γ )

}
�

are two sets of convex functions
with

1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HX
�,γ
(β, α) = ∂γ p

X
�(β, α, γ )

1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HSX
�,γ
(β, µ) = ∂γ p

SX
� (β,µ, γ )

(3.35)

by the Griffiths lemma [15, 16] and via (3.18), (3.23), (3.24), (3.29) and (3.34), one obtains
for γ = 0 and ρ > 0

lim
�

1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HSX
�
(β,µ�(ρ)) = lim

�

1

V

∑
{k∈�∗:‖k‖�δ}

〈Nk〉HX
�
(β, α�(ρ)). (3.36)

Therefore, equalities (3.21) and (3.36) imply (3.19) by taking the limit δ → 0+. �

Remark 3.3. If there is a critical particle density ρX(β, αsup) (2.17), to prove (3.19) for
ρ > ρX(β, αsup), we only need ∂γ αsup(γ ) = 0, see (3.27). Whereas, if there is α1,β

(condition 2.1 (iv)), for ρ ∈ (
ρXinf(β, α1,β), ρ

X
sup(β, α1,β)

)
(2.15) ∂γ α1,β (γ ) = 0 is the only

condition necessary to get (3.19), see (3.32).

Remark 3.4. The condition αsup(γ ) = αsup or more generally ∂γ αsup(γ ) = 0 is verified by
a large class of known Hamiltonians. However, the assumption α1,β (γ ) = α1,β , or more
generally ∂γ α1,β (γ ) = 0, should be more subtle. For example, one may analyse this last
assumption using the Bogoliubov weakly imperfect Bose gas (cf equation (3.81) in [18]) for
HX
� (1.17), see [10, 19, 20].

Corollary 3.5. We consider as verified all the assumptions of theorem 3.2, and also

lim
δ→0+

lim
�

 1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HX
�
(β, α�(ρ))

 = ρ − ρ̃c(β, ρ) > 0 (3.37)

with

ρ̃c(β, ρ) � lim
α→α−

sup

ρX(β, α).

Then via theorem 3.2 one deduces

lim
δ→0+

lim
�

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HSX
�
(β,µ�(ρ)) = ρ − ρ̃c(β, ρ) > 0 (3.38)

with α�(ρ) and µ�(ρ) defined by (3.2) and (3.7) respectively.

Therefore by corollary 3.5 a ‘global’ Bose condensation (3.37) in the model X (1.17) implies
a ‘global’ Bose condensation (3.38) in the model SX (1.18) with exactly the same density for
a fixed (full) particle density ρ.

Considering now the PBG and the IBG, i.e. HX
� = T� (1.2) and HSX

� = H IBG
� (1.1), the

corollary 3.5 implies again (1.12)–(1.16), i.e. in the grand-canonical ensemble

ρIBG
0 (β, ρ) = ρPBG

0 (β, ρ) = sup{0, ρ − ρPBG (β, 0)}. (3.39)
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3.2. Existence of different kinds of Bose condensation

In spite of the existence of the same ‘global’ Bose condensation for the models X (1.17) and
SX (1.18) (corollary 3.5), we recall that the Bose condensation phenomena are more complex
than, for example, in the PBG or in the IBG. Indeed formally the ‘global’ Bose condensation
(3.1) or (3.37) may be constituted of six kinds of Bose condensation (cf appendix A). For
example, let us consider the non-superstable model with diagonal interactions presented
in [12],

HBZ
� = ε0a

∗
0a0 +

g0

V
a∗

0a
∗
0a0a0 +

∑
k∈�∗\{0}

{
εka

∗
k ak +

g

V
a∗
k a

∗
kakak

}
(3.40)

where

ε0 < 0 g0 > 0

εk �=0 = h̄2k2/2m g > 0. (3.41)

Then for a dimension d = 3, we may have a coexistence of two kinds of condensation [12]:

• The stability domain

QBZ ≡
{
(β > 0, α ∈ R) : lim

�
pBZ� (β, α) ≡ lim

�

{
1

βV
ln TrFB

�

(
e−β(HBZ

� −αN�))} < +∞
}

of HBZ
� (3.40) is

QBZ = {β > 0} × {α � αsup = 0 < +∞}.
• There is α01 < 0 such that there is no condensation for α < α01.
• A macroscopic occupation of the mode k = 0 starts from α01 = ε0 < 0 to α02 = 0, i.e.

ρBZ0 (β, α) ≡ lim
�

1

V
〈a∗

0a0〉HBZ
�
(β, α) = sup

{
0,
α − ε0

2g0

}
. (3.42)

This condensation (3.42) for α ∈ (α01, 0] is due to the instability implied by the diagonal
interaction in the zero-mode (ε0 < 0, g0 > 0 in (3.40)), i.e. it is a non-conventional Bose
condensation.

• Since ρBZ0 (β, α) (3.42) and the corresponding particle density

ρBZ(β, α) ≡ lim
�

1

V
〈N�〉HBZ

�
(β, α)

attain their maxima at α = 0, i.e.

ρBZ0 (β, 0) = − ε0

2g0
ρBZ(β, 0) = sup

α�0
ρBZ(β, α) < +∞ (3.43)

then a conventional BE condensation occurs for fixed particle densities ρ > ρBZ(β, 0),
but in a generalized sense, i.e. in modes close to k = 0. In fact since g > 0 (3.41) this
second conventional BE condensation is non-extensive (type III),

ρ̃BZ0 (β, ρ) ≡ lim
δ→0+

lim
�

1

V

∑
{k∈�∗:0<‖k‖<δ}

〈Nk〉HBZ
�

= sup{0, ρ − ρBZ(β, 0)} (3.44)

and coexists with the non-conventional one ρBZ0 (β, 0) (3.42) for ρ > ρBZ(β, 0). Then
the ‘global’ Bose condensation is equal to

ρ̃BZ0 (β, ρ) + ρBZ0 (β, 0) for ρ > ρBZ(β, 0). (3.45)
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Another example of such a kind of thermodynamic behaviour is given by the Bogoliubov
weakly imperfect Bose gas (cf equation (3.81) in [18]), see [10, 19, 20].

Therefore, in order to rigorously prove the existence of the same kinds of condensation for
the models X (1.17) and SX (1.18), a priori, we should really take into account in a separate
way the probable existence of six kinds of Bose condensation, cf appendix A. However in this
paper, we restrict our discussion only to very simple cases. Note that for the moment, the
non-conventional condensations explicitly found are only of type I [10, 12, 13, 19, 20].

By analogy with the previous example presented in [12], cf (3.40)–(3.45), we analyse the
simple case in which a Bose condensation of type I (for simplicity in the zero-mode) exists for
the model X (1.17), using a fixed inverse temperature β, on an interval of chemical potentialα:

lim
�

1

V
〈N0〉HX

�
(β, α) > 0 for α ∈ [α01, α02] α01 < α02 < αsup. (3.46)

We define by µ̃β(α) � µc(β) (2.25) the unique solution of equation

α̃β(µ̃β(α)) = α � αsup (3.47)

see [1]. If we consider the existence of α1,β (condition 2.1 (iv)), then we assume that
α1,β /∈ [α01, α02], i.e.

[µ1,inf(β), µ1,sup(β)] ∩ [µ̃β(α01), µ̃β(α02)] = {∅}
cf (2.24) and µ̃β(α02) < µc(β) (2.25). Then one gets the following theorem.

Theorem 3.6. If the non-superstable HamiltonianHX
� (1.17) verifies conditions 2.1, then one

has

lim
�

1

V
〈N0〉HSX

�
(β,µ) = lim

�

1

V
〈N0〉HX

�
(β, α̃β(µ)) (3.48)

for µ /∈ (µ1,inf(β), µ1,sup(β)) (2.24) and µ < µc(β) (2.25) with α̃β (µ) < αsup defined as the
unique solution of (2.19). In fact

lim
�

1

V
〈N0〉HSX

�
(β,µ) = lim

�

1

V
〈N0〉HX

�
(β, α̃β(µ)) > 0 (3.49)

for

µ ∈ DSX
µ ≡ {µ ∈ R : α̃β (µ) ∈ [α01, α02]} = [µ̃β(α01), µ̃β(α02)] �= {∅}. (3.50)

Proof.
(1) Again, in order to control the Bose condensation in the superstable model SX (1.18),

we introduce the auxiliary Hamiltonians

HX
�,γ0

≡ HX
� − γ0N0 HSX

�,γ0
≡ HSX

� − γ0N0 = HX
�,γ0

+
λ

V
N2
� (3.51)

for δ > 0 and λ > 0. We set

pX�(β, α, γ0) ≡ 1

βV
ln TrFB

�

(
e−β(HX

�,γ0
−αN�))

pSX� (β,µ, γ0) ≡ 1

βV
ln TrFB

�

(
e−β(HSX

�,γ0
−µN�)). (3.52)

The stability domain

QX
γ0

≡ {
(β > 0, α ∈ R) : lim

�
pX�(β, α, γ0) < +∞} �= {∅}

associated with HX
�,γ0

(3.51) is

QX
γ0

= {β > 0} × {α < αsup(γ0) < +∞}. (3.53)

Note that αsup(γ0) ∈ [αsup − γ0, αsup] if γ0 > 0.
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(2) Let µ /∈ (µ1,inf(β), µ1,sup(β)) (2.24) and µ < µc(β) (2.25), i.e. α̃β(µ) �= α1,β

and α̃β (µ) < αsup. Since the non-superstable Hamiltonian HX
� (1.17) verifies conditions

2.1 for any α + γ0 < αsup (α < αsup), the pressure pX�(β, α, γ0) (3.52) exists for any
γ0 < b0 ≡ (αsup − α) > 0. Moreover, since γ0 < b0, following the same kinds of argument
as in section 3.1, cf (3.9)–(3.15), the Hamiltonian HX

�,γ (3.9) also verifies (i) and (iii) of
conditions 2.1. Then, via (2.19) one obtains

pSX(β,µ, γ0) ≡ lim
�
pSX� (β,µ, γ0) = inf

α<αsup(γ0)

{
pX(β, α, γ0) +

(µ− α)2

4λ

}
(3.54)

for µ /∈ (µ1,inf(β), µ1,sup(β)) (2.24), µ < µc(β) (2.25) and γ0 < b0, with

pX(β, α, γ0) ≡ lim
�
pX�(β, α, γ0)

see (3.52).
(3) Note that

{
pX�(β, α, γ0)

}
�

and
{
pSX� (β,µ, γ0)

}
�

are also two sets of convex functions
such that

1

V
〈N0〉HX

�,γ0
(β, α) = ∂γ0p

X
�(β, α, γ0)

1

V
〈N0〉HSX

�,γ0
(β,µ) = ∂γ0p

SX
� (β,µ, γ0).

Consequently following the same kinds of argument as for the proof of theorem 3.2 (cf (3.22)–
(3.24) and (3.35)–(3.36)), by the Griffiths lemma [15, 16] and (3.54), for γ0 = 0 and for
µ /∈ (µ1,inf(β), µ1,sup(β)) (2.24) and µ < µc(β) ( 2.25) we find

lim
�

1

V
〈N0〉HSX

�
(β,µ) = lim

�

1

V
〈N0〉HX

�
(β, α̃β(µ))

with α̃β(µ) < αsup (̃αβ (µ) �= α1,β ) defined as the unique solution of (2.19).
(4) Then, since α1,β /∈ [α01, α02] and α02 < αsup, via (3.46) we have (3.49) for

µ ∈ DSX
µ = [µ̃β(α01), µ̃β(α02)] �= {∅} (3.50), see (3.47). �

For high fixed particle densities ρ > 0, if the non-superstable HamiltonianHX
� (1.17) verifies

conditions 2.1, the results of corollary 3.5 and theorem 3.6 mean as follows:

Corollary 3.7. If (3.46) is verified then

lim
�

1

V
〈N0〉HSX

�
(β,µ�(ρ)) = lim

�

1

V
〈N0〉HX

�
(β, α�(ρ)) > 0 (3.55)

for

ρ ∈ DSX
ρ = [ρ01, ρ02] ∈ (0, ρXinf(β, α1,β)

) ∪
(
ρXsup(β, α1,β), lim

α→α−
sup

ρX(β, α)
)

�= {∅} (3.56)

with α�(ρ) and µ�(ρ) defined by (3.2) and (3.7) respectively. Here ρ01 and ρ02 are defined
by

ρ01 ≡ ρX(β, α01) = ρSX(β, µ̃β(α01)) ⇔ µ(ρ01)

= µ̃β(α01) ⇔ α̃β (µ(ρ01)) = α01 < αsup

ρ02 ≡ ρX(β, α02) = ρSX(β, µ̃β(α02)) ⇔ µ(ρ02)

= µ̃β(α02) ⇔ α̃β (µ(ρ02)) = α02 < αsup

(3.57)

see (3.47).
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Moreover, if the Bose condensation (3.46) coexists only with a conventional BE condensation
of any type I, II or III for the model X (1.17) for ρ > ρX(β, αsup) (2.17), then, assuming the
conditions of theorem 3.6 and that there is δ > 0 such that αsup(γ0) = αsup for γ0 ∈ [−δ, δ],
cf (3.53), the condensation (3.55) coexists also for ρ > ρX(β, αsup) with a conventional BE
condensation for the model SX (1.18).

Proof.
(1) ρ < limα→α−

sup
ρX(β, α), i.e. µ(ρ) < µc(β) (2.25) where µ(ρ) is defined by

(2.29), see also (3.8). Considering the existence of α1,β (condition 2.1 (iv)), since α1,β /∈
[α01, α02], [ρ01, ρ02] /∈ [

ρXinf(β, α1,β ), ρ
X
sup(β, α1,β)

]
(2.15), i.e. µ(ρ) /∈ [µ1,inf(β), µ1,sup(β)]

(2.24). Then (3.55)–(3.56) are only a consequence of (2.30) and (3.47)–(3.49). Note that the
different equations of (3.57) are also a consequence of (2.20)–(2.25).

(2) If there exists δ > 0 such that αsup(γ0) = αsup for γ0 ∈ [−δ, δ], cf (3.53), then
following the same kind of argument derived from (3.22)–(3.23), (3.25)–(3.29) and (3.35)–
(3.36), we can extend (3.48) to find

lim
�

1

V
〈N0〉HSX

�
(β,µ�(ρ)) = lim

�

1

V
〈N0〉HX

�
(β, α�(ρ)) (3.58)

for ρ � ρX(β, αsup) (2.17). Therefore, the last statement of this corollary comes from corollary
3.5 combined with (3.58). �

In fact the results of theorem 3.6 and corollary 3.7 could be extended to any Bose condensation
of type I, II or III which may exist for the model X ( 1.17) on an interval of chemical potential
α ∈ [α01, α02], α01 < α02 � αsup.

Note that the second conventional BE condensation, which may exist for the model X
(1.17), persists in the superstabilized model SX (1.18) but we do not know a priori if its type
changes or not. In fact, we conjecture the following statement:

Conjecture 3.8. If some sufficient conditions such as conditions 2.1 are verified, the models
X (1.17) and SX (1.18) manifest exactly the same kinds of condensation, type included.

Conjecture 3.8 is of course verified by the PBG (1.2) and the IBG (1.1) (cf [5, 6, 9]), but also
by the HamiltoniansHBZ

� (3.40) and

H SBZ
� ≡ HBZ

� +
λ

V
N2
� λ > 0

see [12, 13]. In fact, note that the model BZ (3.40) verifies all the assumptions of corollary
3.7, see (3.40)–(3.45) [12].

4. Canonical ensemble versus grand-canonical ensemble

In this section, we only need that the non-superstable HamiltonianHX
� (1.17) verifies the three

assumptions (i)–(iii) of conditions 2.1.
For the moment, we have presented a method to superstabilize some Hamiltonian HX

�

(1.17). Considering the last section, for a fixed particle density ρ, the models X and SX seem
to have exactly the same thermodynamic behaviour, at least on the level of Bose condensations,
see corollaries 3.5 and 3.7, conjecture 3.8. To go further in the understanding of relations
between the models X and SX we analyse now their corresponding (infinite volume) Gibbs
states:
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• in the canonical ensemble (β, ρ)

ωXβ,ρ(−) ≡ lim
�

〈−〉HX
�
(β, ρ) ωSXβ,ρ(−) ≡ lim

�
〈−〉HSX

�
(β, ρ) (4.1)

formally the (infinite volume) canonical Gibbs states corresponding to the Bose gases X
(1.17) and SX (1.18) respectively;

• in the grand-canonical ensembles, (β, α) for the model X (1.17) and (β,µ) for the model
SX (1.18), i.e. formally

ωXβ,α(−) ≡ lim
�

〈−〉HX
�
(β, α) ωSXβ,µ(−) ≡ lim

�
〈−〉HSX

�
(β,µ). (4.2)

We recall that 〈−〉HX
�
(β, ρ) and 〈−〉HSX

�
(β, ρ) are the ( finite volume) canonical Gibbs

states associated with HX
� (1.17) and HSX

� (1.18) respectively, whereas 〈−〉HX
�
(β, α) and

〈−〉HSX
�
(β,µ) are the corresponding ( finite volume) grand-canonical Gibbs states, see (2.6).

In the canonical ensemble, note that the two models X and SX are completely equivalent
on the level of Gibbs states. Indeed, via (1.18), (2.1) and (2.3), for any operator A in the set
of operators acting on FB

� (1.4) such that

〈A〉HX
�
(β, ρ) < +∞ or 〈A〉HSX

�
(β, ρ) < +∞

one has

TrH(n)
B

({
A e−βHSX

�

}(n)) = e−βλρ2
TrH(n)

B

({
A e−βHX

�

}(n))
(4.3)

which directly implies

〈A〉HSX
�
(β, ρ) = 〈A〉HX

�
(β, ρ) (4.4)

for β > 0 and ρ > 0, see (2.6). In fact, in the thermodynamic limit, formally we get

ωXβ,ρ(−) = ωSXβ,ρ (−). (4.5)

4.1. Strong equivalence between canonical and grand-canonical ensembles

The notion of strong equivalence between the canonical and the grand-canonical ensembles
means in fact that, in term of Gibbs states, fixing the particle density ρ in the grand-
canonical ensemble corresponds to analysing the infinite volume SX Gibbs state (4.1) in
the canonical ensemble. This strong equivalence between the two corresponding ensembles
may not be verified for the model X, whereas the superstable system SX should verify it.
In fact, for superstable interaction the large deviation principle was established by Georgii
[2] in 1994. More precisely, the corresponding paper [2] shows, for superstable gases,
the asymptotic equivalence of microcanonical and grand-canonical Gibbs distributions and
deduces a variational expression for the thermodynamic entropy density. Note also that Lewis
et al prove in [21–26] the strong equivalence of ensembles (canonical/grand-canonical) for
very general state spaces, discrete or continuous, compact or non-compact, but with bounded
interactions. The authors were indeed interested in getting a large deviation principle for the
empirical measure for the so-called tau-topology. To resume, the main restriction of this work
[21–26] is the fact that the energy is a sum of local bounded observables. An application is
done in [27] for lattice systems.

Here, the aim of this section is only to explain this notion of strong equivalence in our
(specific) superstable model SX (1.18). Though the model SX combined with (4.4), actually
we are interested in using this strong equivalence to give a new way to study the Bose gas X in
the canonical ensemble. But first, assuming as verified the assumptions (i)–(iii) of conditions
2.1, we give some results which are a simple application of [2] to the model SX.
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Let us consider by A� a (positive) quasi-local operator acting on

FB
� ⊂ FB

∞ ≡ +∞⊕
n=0
(L2(Rnd))symm (4.6)

such that

lim
�

〈A�〉HX
�
(β, ρ) = lim

�
〈A�〉HSX

�
(β, ρ) < +∞ (4.7)

for any β > 0 and ρ > 0 whereas for α < αsup or µ ∈ R

lim
�

〈A�〉HX
�
(β, α) < +∞ lim

�
〈A�〉HSX

�
(β,µ) < +∞. (4.8)

Then, one gets the following theorem:

Theorem 4.1. We have

lim
�

〈A�〉HSX
�
(β,µ) = lim

�
〈A�〉HSX

�
(β, ρ = ρSX(β,µ)) = lim

�
〈A�〉HX

�
(β, ρ = ρSX(β,µ))

(4.9)

with ρSX(β,µ) defined by (2.20).

Proof. The proof is mostly a direct consequence of [2]. Here, we only give a simple but
instructive proof considering our specific model SX.

Using the free-energy density f X� (β, ρ) (2.2) combined with (1.18), (2.1) and (2.6), one
has

〈A�〉HSX
�
(β,µ) = 1

V

∑
t∈{0,1/V,2/V,...,+∞}

ν�(t)h�(t) (4.10)

with

h�(t �= 0) ≡ 〈A�〉HX
�
(β, t) � 0 h�(0) ≡ lim

t→0+
〈A�〉HX

�
(β, t)

ν�(t) ≡ exp(βV {µt − λt2 − f X� (β, t)})
1
V

∑
t∈{0,1/V,2/V,...,+∞} exp

(
βV

{
µt − λt2 − f X� (β, t)

}) (4.11)

with f X� (β, 0) ≡ limt→0+ f X� (β, t). Note that

pSX� (β,µ) = 1

βV
ln

+∞∑
n=0

exp

(
βV

{
µ
( n
V

)
− λ

( n
V

)2
− f X�

(
β,
n

V

)})
cf (2.2) and (2.4). pSX(β,µ) (2.19) is the Legendre transformation of f SX(β, ρ) (2.18), i.e.

pSX(β,µ) = sup
t>0

{µt − f SX(β, t)} = sup
t>0

{µt − λt2 − f X(β, t)}. (4.12)

Then, since the particle density ρSX(β,µ) (2.20) is a strictly increasing function for µ ∈ R

[1] which via (4.12) verifies

ρSX(β,µ) = ∂µp
SX(β,µ) = ∂µ

(
sup
t>0

{µt − λt2 − f X(β, t)}
)

we deduce that ρSX(β,µ) = ρ is the unique solution of

sup
t>0

{µt − λt2 − f X(β, t)} = µρ − λρ2 − f X(β, ρ). (4.13)

Also, there are M > 0 andK < αsup such that

µt − λt2 − f X� (β, t) < Kt (4.14)
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for t � M . Then, for each ε > 0,

1

V

∑
t∈{0,1/V,2/V,...,+∞}

h�(t)ν�(t) = exp

(
−βV

{
pSX� (β,µ)− 1

βV
lnV

})

× h�(ρε,�)
 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩[ρ−ε,ρ+ε]

ν�(t)

 + exp

(
−βV

{
pSX� (β,µ)

− 1

βV
lnV

})
h�(ρ

−
ε,�)

 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩[0,ρ−ε)

ν�(t)


+ exp

(
−βV

{
pSX� (β,µ)− 1

βV
lnV

})

× h�
(
ρ+
ε,�

) 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩(ρ+ε,M)

ν�(t)

 + exp
(−βVpSX� (β,µ)

)

×


+∞∑
n�M×V

exp
(
βV

{
µ
( n
V

)
− λ

( n
V

)
2 − f X�

(
β,
n

V

)})
h�

( n
V

) (4.15)

where ρε,� ∈ [ρ − ε, ρ + ε], ρ−
ε,� ∈ [0, ρ − ε), and ρ+

ε,� ∈ (ρ + ε,M):

h�(ρε,�) = 1

2ε

 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩[ρ−ε,ρ+ε]

h�(t)ν�(t)


h�(ρ

−
ε,�) = 1

ρ − ε

 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩[0,ρ−ε)

h�(t)ν�(t)


h�
(
ρ+
ε,�

) = 1

M − (ρ + ε)

 1

V

∑
t∈{0,1/V,2/V,...,+∞}∩(ρ+ε,M)

h�(t)ν�(t)

 .
Using the large deviation principle [21, 23],

lim
�

1

βV
ln

∑
t∈{0,1/V,2/V,...,+∞}∩(a,b)

ν�(t)− pSX� (β,µ)

= sup
t∈(a,b)

{µt − λt2 − f X(β, t)} − sup
t>0

{µt − λt2 − f X(β, t)}

for any a, b ∈ R
+ and thus

lim
�

exp

(
−βV

{
pSX� (β,µ)− 1

βV
lnV

})
1

V

∑
t∈{0,1/V,2/V,...,+∞}∩(a,b)

ν�(t) dt


= χ(a,b)(t = ρ) (4.16)

where χ(a,b)(t) is a characteristic function of (a, b). By (4.7) the function h�(t) (4.11) is well
defined in the thermodynamic limit for any t > 0. Therefore, since by (4.14) one has
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+∞∑
n�M×V

exp

(
βV

{
µ
( n
V

)
− λ

( n
V

)2
− f X�

(
β,
n

V

)})
h�

( n
V

)

�
+∞∑

n�M×V
eβKnh�

( n
V

)
< + ∞

with K < αsup (cf (4.8)), we deduce from (4.15) and (4.16) that

lim
ε→0+

lim
�

1

V

∑
t∈{0,1/V,2/V,...,+∞}

h�(t)ν�(t) = lim
ε→0+

lim
�
h�(ρε,�) = lim

�
〈A�〉HSX

�
(β, ρSX(β,µ))

see (4.10)–(4.11), i.e. combined with (4.4) one has (4.9). �

Corollary 4.2. For β > 0 and ρ > 0, we deduce from theorem 4.1 that

lim
�

〈A�〉HSX
�
(β,µ�(ρ)) = lim

�
〈A�〉HSX

�
(β, ρ) = lim

�
〈A�〉HX

�
(β, ρ)

with µ�(ρ) defined by (3.7).

In fact, thermodynamic behaviour of the superstable model SX (1.18) in the canonical
ensemble is ‘identical’ to that in the grand-canonical ensemble and then, the analysis of
the X Gibbs state (4.1) in the canonical ensemble could be done in the thermodynamic
limit by using the grand-canonical SX Gibbs state (4.2) for a fixed particle density, see
corollary 4.2.

4.2. Generating functionals

A first application of (4.4), theorem 4.1 and corollary 4.2 is the study of the generating
functionals of Gibbs states (4.1 ) and (4.2). Indeed originally initiated by Araki and Woods
[28], see also [29–32] or appendix B, the description of Gibbs states can be given by using the
representations of the CCR (canonical commutation relations).

Hence, following these works [28–32], using the Fock representation of the CCR [32]
over the space D� of C∞

0 (�)-functions with compact support contained in �, we define by
E
X
�,c(β, ρ; h) and E

SX
�,c(β, ρ; h) the canonical generating functionals corresponding to HX

�

(1.17) and HSX
� (1.18) respectively:

E
X
�,c(β, ρ; h) ≡ 〈

WFB
� (h)

〉
HX
�

(β, ρ) E
SX
�,c(β, ρ; h) ≡ 〈

WFB
� (h)

〉
HSX
�

(β, ρ). (4.17)

Let us also consider by

E
X
�(β, α; h) ≡ 〈

WFB
� (h)

〉
HX
�

(β, α) E
SX
� (β,µ; h) ≡ 〈

WFB
� (h)

〉
HSX
�

(β,µ) (4.18)

the grand-canonical generating functionals corresponding to HX
� (1.17) and HSX

� (1.18)
respectively. Then assuming again that the HamiltonianHX

� verifies (i)–(iii) of conditions 2.1,
via (4.4) and theorem 4.1 for A� = WFB

� (h), one gets the following result:

Corollary 4.3. In the canonical ensemble,

E
SX
�,c(β, ρ; h) = E

X
�,c(β, ρ; h) (4.19)

for β > 0 and ρ > 0, whereas in the grand-canonical ensemble,

E
SX(β,µ; h) ≡ lim

�
E
SX
� (β,µ; h) = E

SX
c (β, ρSX(β,µ); h) = E

X
c (β, ρ

SX(β,µ); h) (4.20)
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for (β,µ) ∈ QS ≡ {β > 0} × {µ ∈ R} and h in the space D = ⋃
�⊂R

d D� of C∞-smooth
functions on R

d having compact support. Here

E
X
c (β, ρ; h) ≡ lim

�
E
X
�,c(β, ρ; h) E

SX
c (β, ρ; h) ≡ lim

�
E
SX
�,c(β, ρ; h).

In particular, considering the particle density ρ as a parameter, by corollary 4.2 one has

E
X
c (β, ρ; h) = E

SX
c (β, ρ; h) = E

SX(β,µ(ρ); h) = lim
�

E
SX
� (β,µ�(ρ); h) (4.21)

with µ�(ρ) solution of (3.7) and with the corresponding thermodynamic limit µ(ρ) defined
by (2.29).

A direct application of corollary 4.3 or (4.21) could be done by using the PBG (1.2)
example for which the corresponding superstable model is the IBG (1.1). Thus from (4.21)
the grand-canonical generating functional corresponding to H IBG

� (1.1),

E
IBG
� (β,µ; h) ≡ 〈

WFB
� (h)

〉
H IBG
�

(β,µ) = TrFB
�

(
WFB

� (h) e−β(H IBG
� −µN�))

TrFB
�

(
e−β(H IBG

� −µN�)) (4.22)

for µ = µIBG
� (ρ) (4.24) gives in the thermodynamic limit

E
PBG
c (β, ρ; h) = E

IBG
c (β, ρ; h) = E

IBG
(
β,µIBG(ρ); h) ≡ lim

�
E

IBG
�

(
β,µIBG

� (ρ); h) (4.23)

with µIBG
� (ρ) satisfying

ρIBG
�

(
β,µIBG

� (ρ)
) ≡

〈
N�

V

〉
H IBG
�

(
β,µIBG

� (ρ)
) = ρ > 0 (4.24)

and the corresponding thermodynamic limit µIBG(ρ) solution of (1.13). Here

E
PBG
c (β, ρ; h) ≡ lim

�

〈
WFB

� (h)
〉
T�
(β, ρ) E

IBG
c (β, ρ; h) ≡ lim

�

〈
WFB

� (h)
〉
H IBG
�

(β, ρ).

Using the results of [28–32], the canonical generating functional E
PBG
c (β, ρ; h) is equal to

E
PBG
c (β, ρ; h) = exp

{
−1

4
‖h‖2 − 1

2

∫
R
d

|hk|2
eβ(εk−αPBG(ρ)) − 1

ddk

}
(4.25)

for ρ < limα→0− ρPBG(β, α) (1.10) with αPBG(ρ) verifying

ρPBG(β, αPBG(ρ)) = ρ for ρ < lim
α→0−

ρPBG(β, α). (4.26)

Here

hk ≡ (eikx, h)L2(Rd ) for k ∈ R
d

is the Fourier decomposition of functions h ∈ D.
For dimensions d � 3, one has a saturation of the particle density ρPBG(β, α) (1.10), i.e.

there is a critical density ρPBG(β, 0) (1.9). Then for ρ � ρPBG(β, 0) (1.9), we have

E
PBG
c (β, ρ; h) = J0

(√
2(ρ − ρPBG(β, 0))|h0|

)
exp

{
−1

4
‖h‖2 − 1

2

∫
R
d

|hk|2
eβεk − 1

ddk

}
(4.27)

cf [28, 29].
Therefore, combining (4.25) and (4.27) with (4.23) we deduce

E
IBG
c (β, ρ; h) = E

PBG
c (β, ρ; h) = E

IBG(β,µIBG(ρ); h)

= exp

{
−1

4
‖h‖2 − 1

2

∫
R
d

|hk|2
eβ(εk−αPBG(ρ)) − 1

ddk

}
(4.28)



9018 J-B Bru

for ρ < limα→0− ρPBG(β, α),whereas if d � 3, for ρ � ρPBG(β, 0) (1.9) (µIBG(ρ) � µIBG
c (β)

(1.8)), one obtains

E
IBG
c (β, ρ; h) = E

PBG
c (β, ρ; h) = E

IBG(β, µIBG(ρ); h)

= J0
(√

2(ρ − ρPBG(β, 0))|h0|
)

exp

{
−1

4
‖h‖2 − 1

2

∫
R
d

|hk|2
eβεk − 1

ddk

}
.

(4.29)

In fact for the corresponding IBG Gibbs state one can fix either the chemical potentialµwhich
implies a particle density ρIBG(β,µ), or the particle density ρ which implies a chemical
potential µIBG(ρ) (1.13). In particular, the analysis of the grand-canonical IBG Gibbs
state with a fixed particle density ρ corresponds, in the thermodynamic limit, to studying
the canonical IBG Gibbs state, see ( 4.28) and (4.29). This property is verified by any
superstabilized model SX (1.18), see (4.19)–(4.21).

Note that this property, satisfied by the IBG, is not verified by the PBG for ρ > ρPBG(β, 0)
(1.9) (d � 3), even if their Bose condensation phenomenon is similar (cf (1.15) and more
generally section 3). Indeed the papers [30, 31] show that

E
PBG(β, αPBG(ρ) � 0; h) ≡ lim

�
E

PBG
�

(
β, αPBG

� (ρ); h) = E
PBG
c (β, ρ; h)

for ρ � ρPBG(β, 0) (1.9) (d � 3), see (4.25), whereas for ρ > ρPBG(β, 0)

Ẽ
PBG

(β, ρ; h) ≡ lim
�

E
PBG
�

(
β, αPBG

� (ρ); h)
= exp

{
−1

2
|h0|2(ρ − ρPBG(β, 0))

}
exp

{
−1

4
‖h‖2 − 1

2

∫
R
d

|hk|2
eβεk − 1

ddk

}
.

In fact, for ρ > ρPBG(β, 0)

Ẽ
PBG

(β, ρ; h) =
∫ +∞

ρPBG(β,0)
E

PBG
c (β, t; h) exp

{
− t − ρPBG(β, 0)

[ρ − ρPBG(β, 0)]

}
dt

[ρ − ρPBG(β, 0)]

cf [29], and then

Ẽ
PBG

(β, ρ; h) �= E
PBG
c (β, ρ; h) ρ > ρPBG(β, 0) (4.30)

see (4.27). Inequality (4.30) comes from the non-bijectivity for ρ > ρPBG(β, 0) (d � 3) of
the function

ρ → αPBG(ρ) = lim
�
αPBG
� (ρ) =

{
αPBG(ρ) < 0 for ρ < ρPBG(β, 0) cf (2.27)

αPBG(ρ) = 0 for ρ � ρPBG(β, 0) cf (2.28)

see (3.2) and (3.6). More generally, in the thermodynamic limit, the strong equivalence
between the canonical ensemble (β, ρ) and the grand-canonical ensemble (β, α) for the non-
superstable Bose gas X (1.17) is directly related to the function ρ → αX(ρ). As soon as the
function ρ → αX(ρ) is bijective on a subdomain R1 of particle density ρ > 0, this strong
equivalence of ensembles is verified for ρ ∈ R1. However, the existence of a subdomain R2

of ρ > 0 where the function ρ → αX(ρ) is not injective (remark 2.3) implies the breakdown
of the strong equivalence of ensembles for ρ ∈ R2, see also discussions in [33].

4.3. Bose condensations in the canonical ensemble

To go further, note that the analysis of the superstable Bose gas SX (1.18) may give a lot
of information about the thermodynamic behaviour of the non-superstable model X (1.17)
in the canonical ensemble. For example, using (4.21) for a fixed particle density ρ, we
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deduce, in the thermodynamic limit, the canonical X generating functional E
X
c (β, ρ; h) from

the grand-canonical SX generating functional E
SX(β,µ(ρ); h).

Therefore, the end of this section just explains that from the knowledge of the existence
of Bose condensations in the model SX (1.18) (cf section 3) we deduce the existence of the
same Bose condensations for the model X (1.17) but in the canonical ensemble. Indeed via
corollary 4.2 for

A� = 1

V

∑
{k∈�∗:0�‖k‖<δ}

Nk (4.31)

one has

lim
δ→0+

lim
�

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HSX
�
(β,µ�(ρ))= lim

δ→0+
lim
�

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HSX
�
(β, ρ)

= lim
δ→0+

lim
�

1

V

∑
{k∈�∗:0�‖k‖<δ}

〈Nk〉HX
�
(β, ρ) (4.32)

with µ�(ρ) defined by (3.7). More generally, considering the same particle density ρ, one has
exactly the same kinds of Bose condensation in the thermodynamic limit for the model SX in
the grand-canonical ensemble as for the two models SX and X in the canonical ensemble.
Therefore, the study of Bose condensation phenomena in the grand-canonicalensemble for the
superstabilized model SX (1.18) also gives an analysis of the Bose condensation phenomena
in the canonical ensemble for the model X (1.17).

In particular, assuming as verified all the assumptions of theorem 3.2, by corollary 4.2,
i.e. (4.32), combined with corollary 3.5, a ‘global’ Bose condensation (3.37) for the model
X (1.17) in the grand-canonical ensemble implies the existence of the same ‘global’ Bose
condensation (3.37) for the model X (1.17) in the canonical ensemble.

Then, for d � 3, considering that the IBG (1.1) manifests, for high densities
ρ � ρPBG(β, 0) (1.9), only one conventional BE condensation ρIBG

0 (β, ρ) (1.12) in the
grand-canonical ensemble, equation (4.32) implies the existence of only one conventional
BE condensation for the IBG or the PBG (1.2) in the canonical ensemble with the same
condensate density (cf [29]),

lim
�

1

V
〈a∗

0a0〉H IBG
�

(
β,µIBG

� (ρ)
) = lim

�

1

V
〈a∗

0a0〉T�
(
β, αPBG

� (ρ)
)

= lim
�

1

V
〈a∗

0a0〉H IBG
�
(β, ρ) = lim

�

1

V
〈a∗

0a0〉T�(β, ρ)
= sup{0, ρ − ρPBG(β, 0)} (4.33)

see (1.12)–(1.15), with αPBG
� (ρ) and µIBG

� (ρ) respectively defined by (1.16) and (4.24). More
generally, using conjecture 3.8 combined with theorem 4.1 and corollary 4.2 (see also (4.32))
we express our second conjecture.

Conjecture 4.4. If some sufficient conditions such as conditions 2.1 are verified, for a fixed
particle density ρ > 0, the model X (1.17) manifests in the canonical and grand-canonical
ensembles exactly the same kinds of condensation, type included.

5. Concluding remarks

By adding the interaction (λ/V )N2
�, see (1.18), the paper [1] proposes a method to

superstabilize a non-superstable Hamiltonian HX
� (1.17) verifying conditions 2.1 and more
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precisely the weak equivalence of ensembles (2.10). This is done without destroying the
‘fundamental’ thermodynamic properties coming from the Bose system X (1.17), see [1] or
section 2. In particular, in this paper we show that the same ‘global’ Bose condensation should
appear in the two models X (1.17) and SX (1.18), see corollary 3.5. More generally, we
conjecture that the Bose systems X and SX manifest exactly the same kinds of condensation,
type included, see conjecture 3.8. An example is given by theorem 3.6 and corollary 3.7, or
more precisely by the specific model (3.40), see [12, 13].

In fact, we finally explain that this procedure restores, in the thermodynamic limit, the
strong equivalence of ensembles, cf theorem 4.1 and corollary 4.2, see also [2, 21–26].
A direct consequence of these close thermodynamic relations concerns the study of the
original model X (1.17) in the canonical ensemble using the superstable gas SX (1.18).
Thus this method of superstabilization (1.18) is also an analysis method of the model X in
the canonical ensemble using its thermodynamic behaviour in the grand-canonical ensemble.
As an application, for the model X, the Bose condensation mechanisms in the two ensembles,
canonical and grand-canonical, are very close, see (4.32). In particular, using conjecture 3.8,
these condensation phenomena seem to be identical (type included) in the canonical and
grand-canonical ensembles, see conjecture 4.4.

Remark 5.1. Note that conditions 2.1 represent only some sufficient conditions. For example,
assumption (iv) of conditions 2.1 could be relaxed. Indeed, we can generalize these previous
results even if the (infinite volume) particle density ρX(β, α < αsup) (2.11) is continuous
except for a finite number l � 1 of chemical potential {α1,β , . . . , αl,β } ⊂ (−∞, αsup).

Remark 5.2. The results of this paper remain the same if, instead of (λ/V )N2
� in (1.18), we

use the ‘forward scattering’ interaction

λ

V

∑
k1,k2∈�∗

a∗
k1
a∗
k2
ak2ak1 λ > 0.

Applying this superstabilization (1.18) to the PBG (1.2), one gets the IBG (1.1). Then,
using these results above, we find again the complete thermodynamic behaviour of the IBG
which highlights the canonical and grand-canonical thermodynamic relations between the
PBG and the IBG, cf (3.39), (4.22)–(4.30) and (4.33), see also [1, 4–9, 14, 28–32].

To conclude, the status of the Bogoliubov approximation

a#
0

/√
V → c# ∈ C a#

0 = {a0 or a∗
0} c# = {c or c}

should be analysed for the corresponding non-superstable model X (1.17). Indeed, on the one
hand, this Bogoliubov approximation is already verified for any superstable model SX [34].
On the other hand, their thermodynamic behaviour is similar, see section 3.

Another question for the superstabilized model SX concerns the analysis of the exactness
of the large deviation principle applied to a ‘semi-local’ density of particles in a subdomain
�̃ as is done for the PBG, see [35]. However all the corresponding explanations, including
other analyses of some interacting Bose systems, different from the PBG and the IBG, should
be reserved for following papers as some applications of those general results.
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Appendix A. Classification of Bose condensations

A.1. The van den Berg–Lewis–Pulè classification of conventional generalized condensations

For reader’s convenience, we recall here a nomenclature of (generalized) Bose–Einstein (BE)
condensations according to [36–38]:

• the condensation is called type I when a finite number of single-particle levels are
macroscopically occupied (e.g. the standard BE condensation in the one-mode for the
PBG (1.2) is of type I);

• it is of type II when an infinite number of the levels are macroscopically occupied;
• it is called type III, or the non-extensive condensation, when none of the levels are

macroscopically occupied whereas one has

lim
δ→0+

lim
�

1

V

∑
{k∈�∗,0�‖k‖<δ}

〈Nk〉 = sup{0, ρ − ρc(β)} with Nk ≡ a∗
k ak.

An example of these different condensations is given in [36]. This paper demonstrates that
three types of BE condensation can be realized in the case of the PBG (1.2) in an anisotropic
rectangular box � ⊂ R

3 of volume V = |�| = L1L2L3 and with the Dirichlet boundary
conditions. Let L1 = V n1 , L2 = V n2 , L3 = V n3 for n1 + n2 + n3 = 1 and n1 � n2 � n3 > 0.
If n1 <

1
2 , then for sufficiently large density ρ, we have the BE condensation of type I in

the fundamental mode k = (
2π
L1
, 2π
L2
, 2π
L3

)
. For n1 = 1

2 one gets a condensation of type II

characterized by a macroscopic occupation of infinite package of modes k = (
2πn
L1
, 2π
L2
, 2π
L3

)
,

n ∈ N, whereas for n1 >
1
2 we obtain a condensation of type III. In [39, 40] it was shown

that type III condensation can be caused in the PBG by a weak external potential or (see
[37, 41]) by a specific choice of boundary conditions and geometry. Another example of the
non-extensive condensation is given in an isotropic box� by the IBG (1.1) with the repulsive
interaction

g

V

∑
k∈�∗

a∗
ka

∗
k akak g > 0

which spreads out the conventional BE condensation of type I into the type III BE condensation,
see [12, 42].

A.2. Non-conventional and conventional Bose condensations

The Bose condensations could also be classified by their mechanisms of formation, see [10].
In the overwhelming majority of papers (cf [36, 37, 39–42]), the condensation is due to
saturation of the particle density, originally discovered by Einstein [43] in the Bose gas
without interaction (PBG).
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That kind of Bose condensation is called a conventional BE condensation [10, 14].
The existence of condensations, which is induced by interaction, is pointed out in recent

papers [10, 12, 13, 19, 20, 44]. It is also the case of the Huang–Yang–Luttinger or the full
diagonal models, since the Bose condensation manifested by the two models exists in the
presence of attractive interactions, see [45–47]. In particular note that in the Huang–Yang–
Luttinger model, the condensation appears via a first-order phase transition [46, 47]. This is
also the case for the Bogoliubov weakly imperfect Bose gas (cf equation (3.81) in [18] and
[10, 19, 20]).

The kind of condensation induced by the attraction mechanism is denoted as non-
conventional Bose condensation, cf [10].

Remark A.1. A non-conventional Bose condensation can always be characterized by its type.
Therefore, formally one obtains six kinds of condensation: non-conventional/conventional of
types I, II or III.

Appendix B. Gibbs states and generating functional

The purpose of this section is to review the characterization of (Gibbs) states of a Bose system
by their generating functional, a method originally introduced by Araki and Woods in the case
of the PBG [28]. For each Gibbs state, there is a representation of the canonical commutation
relations (CCR) given by the GNS construction. For a complete description see [32], and
also [29–31] for a detailed analysis of the PBG Gibbs state. Here, we only present a quick
overview.

Let M be a complex pre-Hilbert space with the corresponding scalar product (., .)M . We
consider a representation of the CCR over M given by a map h �→ W(h) from M to a space
U(H) of unitary operators on a Hilbert space H satisfying

W(h1)W(h2) = exp
{
− i

2
Im (h1, h2)M

}
W(h1 + h2) (B.1)

and such that the map λ �→ W(λh) from R to U(H) is strongly continuous. By Stone’s
theorem [32], the continuity implies the existence of self-adjoint operatorsR(h) such that

W(h) = eiR(h). (B.2)

The R(h) are called the field operators and can be interpreted as the random variables of a
non-commutative probability theory, since by (B.1) one gets

[R(h1), R(h2)] = i Im(h1, h2)M. (B.3)

Note that the map h → R(h) is a linear over R, but anti-linear over iR. For h ∈ M , we can
now define the creation and annihilation operators a∗(h) and a(h) ≡ (a∗(h))∗ by

a∗(h) ≡ 1√
2
{R(h)− iR (ih)} a(h) ≡ 1√

2
{R(h) + iR(ih)}. (B.4)

A representation of the CCR is called cyclic if there is a vector � in H such that the set
{W(h)�}h∈M is dense in H. Such � is called a cyclic vector. It can be shown that, for every
regular Gibbs state 〈·〉, there is a unique (up to unitary equivalence) representation of the CCR
with cyclic vector � such that

〈eiR(h)〉 = (�,W(h)�)H.

The generating functional of the representation is defined by

E(h) ≡ (�,W(h)�)H h ∈ M. (B.5)
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The generating functional plays the same role for a state on the CCR algebra as the characteristic
function for probability distribution, see [32].

Theorem B.1. (Araki–Segal). Let E be the generating functional of a cyclic representation of
the CCR over M. Then it satisfies the following:

(i) E(0) = 1;
(ii) for any finite set {cj ∈ C; hj ∈ M}, one has

n∑
l,s=1

E(hl − hs) exp
{ i

2
Im (hl, hs)M

}
clcs � 0;

(iii) for h ∈ M , the map λ → E(λh) from C to R is continuous.

Conversely, any generating functional E : M → C satisfying (i), (ii) and (iii) is a
generating functional of a cyclic representation of the CCR.

Our concrete set-up will be as follows. For a (sufficiently regular) finite volume,� ⊂ R
d ,

the grand-canonical Gibbs state 〈·〉�(β,µ), is defined on the set of bounded operators acting
on the boson Fock space FB

� ≡ FB(L2(�)) over L2(�), see (1.4). In order to analyse the
state 〈·〉�(β,µ), we use the Fock representation WFB

� of the CCR over the pre-Hilbert space
M = D� (the space of the C∞

0 (�)-functions with compact support contained in �). Its
generating functional (B.5) is equal to EFB

�
(h) = e− 1

4 ‖h‖2
, where cyclic vector � is vacuum

in H = FB
� : a(h)� = 0 for any h ∈ D�. Since D� is dense in L2 (�), one can extend WFB

�

to the latter. We shall calculate the generating functional

E�(β,µ; h) ≡ 〈
WFB

� (h)
〉
�
(β,µ) h ∈ D� (B.6)

and study its thermodynamic limit (� ↑ R
d).
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